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Abstract
We report a systematic study of both quantum and classical geometrically
frustrated Ising models with competing ordering mechanism. The ordering
comes in the classical case from a coupling of two-dimensional (2D) layers
and in the quantum model from the quantum dynamics induced by a transverse
field. We develop a microscopic derivation of the Landau–Ginzburg–Wilson
(LGW) Hamiltonian for these models and show that it can be interpreted as the
free energy of three-dimensional (3D) elastic non-crossing strings. By utilizing
this effective Hamiltonian, the entire transverse field versus temperature phase
diagram for the 2D quantum Ising model is obtained analytically, including the
universality classes of both the quantum and the finite temperature transitions.
The structures of the ordered phases in both 3D classical and 2D quantum
Ising models are obtained from a detailed entropy argument. The results are
in excellent agreement with recent numerical simulations.

The competition of quantum and thermal fluctuations is crucial in finding and understanding
exotic phases in geometrically frustrated magnets [1, 2]. For geometrically frustrated Ising
system, the macroscopic degeneracy of the classical ground state may endow the system with a
continuous symmetry which precludes an ordered phase at finite temperatures for 2D quantum
magnets due to the Mermin–Wagner theorem [3]. Another possible but contrary scenario is
‘order-from-disorder’ [4] where quantum fluctuations select a small particularly susceptible
class of the ground-state manifold and yield an ordered symmetry-broken state [5]. Hence one
expects that weak competing fluctuations about the classical ground states is able to generate
new strongly correlated states and phase transitions of unexpected universality classes.

The antiferromagnetic Ising model on a triangular lattice (TIAF)

H = J
∑

〈i, j〉
σiσ j , (1)
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Figure 1. (a) Relation between spins and dimers. (b) Mapping of dimers to strings where the
numbers denote the height profiles. (c) The two flat states with flippable plaquettes (grey). (d) Phase
diagram predicted by equation (7) and Monte Carlo results of figure 1 in [29]. A critical phase (C) is
separated by a boundary at Tc,2 from the paramagnetic phase (PM) and at Tc,1 = 4/9Tc,2 from an
ordered phase (O).

(This figure is in colour only in the electronic version)

the possibly simplest yet nontrivial realization of geometrical frustration, is disordered even
at zero temperature with a finite entropy density and algebraic decaying spin correlations [6].
We are interested in two models, 2D quantum TIAF and 3D stacked TIAF; both models are
based on the triangular Ising antiferromagnet. Actually, these two models share some common
features: by the Suzuki–Trotter theorem [7], the 2D quantum TIAF can be mapped to 3D
classical stacked TIAF.

We start first from considering the classical 2D TIAF in the ground states. Since each
triangle has exactly one frustrated bond, a complete hard-core dimer covering of the dual
hexagonal lattice can be obtained [8]; see figure 1(a). The string representation follows
from a given dimer state by the subtraction of a fixed reference state with all vertical bonds
occupied [9]; see figure 1(b). The strings fluctuate but remain directed (along the reference
direction) and non-crossing (due to the frustration of the spin system); the mean string distance
is � = 3a/2, with a the triangular lattice constant.

The effective free energy of long-wavelength fluctuations of the string lattice is in the form
of a continuum elastic energy

Fel =
∫

d2r
{

c11

2
(∂x u)2 + c44

2
(∂yu)2 + VL(u)

}
(2)

with a periodic potential VL(u) which reflects the discreteness of the lattice and takes the form
of VL = −v cos(4π(u − u0)/a) with v > 0. u is the string displacement from a lattice of
straight strings. u0 is a global offset which differentiates between two non-equivalent classes
of straight states that are not related by shifts by a lattice vector of the triangular lattice; see
figure 1(c). For the straight line lattice which corresponds to the classical spin configuration
(+ + −) on the three sublattices, the mean string positions are centred between the spins,
and the global offset u0 = na/2, n ∈ Z. For the flat string state in which the mean string
positions are located on the sites of one sublattice which has the same number of + and
− spins, i.e., zero magnetization as indicated by 0 in figure 1(c), u0 = a/4 + na/2. The
compression (c11) and tilt (c44) moduli of the corresponding elastic system are both of entropic
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origin. For
√

c11c44 > 2π/a2 the potential VL is relevant, and the strings lock into that class of
states with the maximal number of configurations which yields at arbitrary large r still a finite
displacement 〈[u(r) − u(0)]2〉flat ∼ const, where the displacement is measured relative to the
respective flat state. This entropy argument shows [10] that the states of orientation (+ − 0)

allow for a larger number of localized configurations, and hence is selected and u0 = −a/4
in the locking potential. The compression modulus can be obtained from the equivalence of
non-crossing strings to 1D free Fermions [11] which is based on the Pauli principle and yields
c11 = π2ρ3/g with g = c44/ρ the string tension. Then the periodic potential VL is irrelevant
since

√
c11c44 = πρ2 < 2π/a2. However, in other models additional interactions may increase

the string stiffness, and the lock-in potential might become relevant.
Within the string picture, the classical spin–spin correlations can easily be obtained just by

counting the number of strings in between [12], i.e., 〈σi σ j〉 = 〈(−1)#line[x j ,xi ]〉. This transforms
the problem of spin–spin correlation to a corresponding problem of string displacement field
correlation, yielding the known exact result of 〈σiσ j 〉 = (ri j/a)−η cos(2πri j/3a), η = 1/2.

As in the 2D system, for the stacked TIAF whose Hamiltonian reads H3D =
J‖

∑
〈i j〉,k σikσ jk − J⊥

∑
i,k σikσik+1 (J‖, J⊥ > 0 and 〈i j〉 indicates summation over nearest-

neighbour pairs in each TIAF plane, k numbers the layers), the in-plane frustration is expected
to have strong influence on the underlying physics due to the Ising symmetry. Experimentally,
the stacked model is a reasonable description of triangular cobalt antiferromagnets of the type
ACoX3 where A is an alkali metal and X a halogen atom [13]. Due to the non-frustration in the
additional stacked direction, the increased dimensionality of the stacked system leads to zero
entropy per spin at T = 0 and ordering at even finite temperature might be possible.

The stacked TIAF has been studied first by Blankschtein et al [14, 15]. An LGW
Hamiltonian has been guessed by symmetry arguments, leading to a 3D XY model with a
six-fold symmetry breaking term; this predicted a XY-like transition into the paramagnetic
phase. The sign of the six-fold clock term was not fixed in this approach, and hence two
ordered phases with a relevant symmetry breaking term were possible in principle. However,
more recent simulations and hard-spin mean field theory indicated the existence of only one
ordered phase which corresponds to the one found in [14] at higher temperatures only [16–21].
Moreover, the above LGW approach has been put somewhat into question by Coppersmith [22],
mainly since it has been argued that it fails to describe the system at low temperatures by
neglecting the restriction to classical spin value ±1 and thus geometrical frustration.

In fact, the spin–string mapping mentioned above can also be utilized to the corresponding
stacked system: each frustrated spin layer can be mapped to a 2D elastic string lattice. When
considering the nature of the in-plane geometrical frustration, the intra-layer and interlayer
spin–spin couplings can be written in terms of string displacement field and lead immediately
to a reduced 3D string Hamiltonian [10, 12]

HS = −K̃‖
∑

〈i j〉,k
cos

[
π

�
(uik − u jk + ηi j a/2)

]

− K̃⊥
∑

i,k

cos

[
π

�
(uik − uik+1)

]
+ v

∑

i,k

cos

[
6π

�
uik

]
(3)

with couplings K̃‖ = J‖/T , K̃⊥ = J⊥/T and mean string separation � = 3a/2. The shift ηi j

(= +1 for the bond directions (a, 0) and = −1 for the directions (a/2,±√
3a/2)) reflects the

in-plane frustration.
Thus the stacked Ising model maps to a stack of planar lattices of non-crossing strings

which is described by a (2 + 1)D frustrated XY model with a six-fold clock term. However,
our effective model differs from the previous LGW theory [14] in two important points: (i) the
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in-plane XY coupling is frustrated and (ii) there is a topological constraint on φ since u is
restricted by the non-crossing condition. The latter point will lead to an entropically increased
phase stiffness on large length scales.

The transition of the system to the paramagnetic phase is driven by topological defects
which are generated by thermal fluctuations. These defects are superpositions of two type of
defect: one type is from fully frustrated triangles with all spins aligned, and another type arises
from the mismatch of strings in adjacent layers. Since the stacking [23] and the six-fold clock
term [24] are known to be irrelevant at a critical point under renormalization, the transition
to a paramagnetic phase must be in the 3D XY universality class. In the ordered phase, the
XY couplings of equation (3) can be expanded in uik , and in the continuum limit each layer is
described by equation (2) with an additional harmonic interlayer coupling. Moreover, the six-
fold clock is relevant, and the strings are locked into a flat state with global offset a/4, leading
to a long range order spin state with sublattice magnetization 〈σ 〉 = (

√
3

2 ,−
√

3
2 , 0). This result

appears to be consistent with more recent simulations. In terms of the spin parameter, the
ordered phase can be illustrated as following: the spins on two sublattices form ordered stacked
honeycomb antiferromagnets where two sublattices have a finite but opposite magnetization;
the spins on the third sublattices form Ising chains along the stacking directions. These chains
are decoupled from each other and behave as individual chains which drive the magnetization
of the third sublattice to zero. Such decoupled chain structure contributes significantly to the
specific heat of the system at low temperature. These excitations have actually be seen in Monte
Carlo simulations [17].

Now let us turn to the 2D transverse field triangular Ising model

H = J
∑

〈i, j〉
σ z

i σ z
j + 	

∑

i

σ x
i . (4)

The Suzuki–Trotter theorem [7] shows that the quantum TIAF can be mapped to n layers
classical stacked TIAF with corresponding coupling constants K̃‖ = J/(nT ) and K̃⊥ =
1
2 ln(nT/	). The correspondence becomes exact for an infinite Trotter number n → ∞.
Actually, after the mapping, the effective classical 3D Hamiltonian takes exactly the same
form as that of the 3D classical stacked Ising model. At T = 0, the system shows 3D
behaviour; it is then straightforward to conclude that the quantum phase transition of the 2D
quantum frustrated Ising model is in the 3D XY universality class. At T �= 0, the system
behaves more like a 2D one due to the finite size property of the corresponding effective
classical system. The transitions can be investigated by rewriting the partition function of
equation (3) into a spin wave and a vortex part via the Villain mapping [25, 26]. The Villain
couplings K are known in two limits, K = K̃ for K̃ → ∞ and K = 1/(2 ln(2/K̃ )) for
K̃ → 0. In fact, these limits are realized for K̃⊥ and K̃‖ at large Trotter numbers n, leading to
K⊥ = 1

2 ln(nT/	), K‖ = 1
2 ln−1(2nT/J ). At large n, we can expand this relation, giving

√
K‖K⊥ = 1

2 [1 − ln(2	/J )K‖]. (5)

For layered XY models, dimensional crossover scaling [27] can be used to obtain a relation
between the 3D critical value K c∞ for the in-plane coupling and the corresponding 2D critical
value K c

1 ,

K c
∞ = K c

1

(
ν + γ −1

√
K⊥/K‖

)−1
. (6)

At the quantum critical point the classical string system is a 3D one, and thus at K‖ = K c∞ the
relations of equations (5) and (6) must be identical for consistency. This implies γ = 1/(2K c

1)

and 	c/J = 1
2 eν/K c

1 . The usual Kosterlitz–Thouless (KT) argument yields for the vortex

unbinding transition K c
1 = 2/π × 2/

√
3 on the triangular lattice [28], leading to 	c/J = 1.24.
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However, this estimate neglects renormalization effects due to the clock term, the frustration,
and the non-crossing of strings which should provide a net increase of 	c. Interestingly, recent
Monte Carlo studies suggest 	c/J ≈ 1.65 [29].

At finite temperature, 2D XY physics dominates at large scales, and KT singularities are
expected [25]. By making use of finite size scaling, from K c∞ we obtain the critical coupling
K c

n(K⊥) as a function of K⊥ and n. This result can be used to determine the vortex unbinding
transition at finite T . Be aware that, due to equation (5), the renormalization of the coupling
constants K⊥ and K‖ must be dependent; this yields in the limit n → ∞ the phase boundary
of a critical phase (C) with bound defects,

Tc,2

J
= b

	

	c
lnν

(
	c

	

)
(7)

where b is a constant determined by the quantum critical value of 	c. At a lower Tc,1 =
(4/9)Tc,2 there is a second transition to an ordered state where the clock term becomes relevant
and locks the strings to the lattice. Close to the quantum critical point both temperatures
vanish ∼(	c − 	)ν as expected from scaling. Figure 1 compares equation (7) to recent Monte
Carlo data, showing very good agreement across the entire range of 	 for b = 0.98. The
spin correlations in phase C decay with η varying continuously between η = 1/4 at Tc,2 and
η = 1/9 at Tc,1 [25]. At the quantum critical point one has the 3D XY result η ≈ 0.040 [30].
The ordered phase (O) is characterized by finite sublattice magnetizations (

√
3/2,−√

3/2, 0),
which is consistent with simulations [29].

Interestingly, the mapping to strings should also be useful in the presence of quenched
disorder when the system usually exhibits spin glass behaviour. The behaviour of a 2D string
lattice with pinning sites [31] suggests that in geometrically frustrated systems the spin glass
correlation function [32] gSG(ri − r j ) = 〈σiσ j 〉2 decays at least according to a power law,
which implies that the spin glass phase is destroyed by the huge degeneracy from the geometric
frustration. However, quenched disorder will induce topological defects, and a full analysis
is more complicated. The situation is under better control for geometrically frustrated Ising
systems with random dilution. The dilution sites act as pinning centres for the strings and
topological defects do not arise from this type of disorder. Another potential application of
the spin–string mapping is the study of hard-core bosons on a triangular lattice with nearest
neighbour repulsive interaction and hopping. This model can exactly be mapped to XXZ
Heisenberg model. Without hopping term, it is simply the classical TIAF. The hopping term
(or XY term in spin language) acts as a quantum fluctuation which may induce a similar order
from disorder mechanism; hence a phase with simultaneous Ising long-range order and XY
order is expected. This ordered phase in spin systems corresponds to an ordered phase in the
boson system with simultaneous translational long-range order and off-diagonal long-range
order, i.e. the supersolid phase. Evidence of this supersolid phase has been observed in recent
numerical simulations [33].
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